Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Gui-Hua Li and Yang-Gen Hu*

Department of Medicinal Chemistry, Yunyang Medical College, Shiyan 442000, People's Republic of China

Correspondence e-mail: huyangg111@yahoo.com.cn

Key indicators

Single-crystal X-ray study T = 292 K Mean σ (C–C) = 0.003 Å Disorder in main residue R factor = 0.056 wR factor = 0.169 Data-to-parameter ratio = 16.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

4-Benzylidene-2-diethylamino-1-phenyl-1*H*-imidazol-5(4*H*)-one

In the crystal structure of the title compound, $C_{20}H_{21}N_3O$, intramolecular $C-H\cdots N$ hydrogen bonds stabilize the conformation of the molecule.

Received 25 March 2006 Accepted 29 March 2006

Comment

Derivatives of 4*H*-imidazol-4-ones have shown biological activity (Lacroix *et al.*, 2000). Some 2-alkylaminoimidazolones exhibit good antibacterial and antifungal activities (Trivedi *et al.*, 2002). Recently, in our work on the synthesis of biologically active imidazolinones, we have developed a facile synthesis of 2-dialkylamino-4*H*-imidazolin-4-ones (Hu *et al.*, 2004; Xin & Hu, 2006). The title compound, (I), may be used as a new precursor for obtaining bioactive molecules and its structure is reported here (Fig. 1 and Table 1).

The five-membered imidazolone ring is planar, with a maximum deviation of 0.012 (2) Å for atoms N2. The C1–C6 phenyl ring is only slightly twisted with respect to the imidazolone ring [dihedral angle = 72.1 (1)°]. The diethylamino substituent (C18/C17/N3/C19/C20) is disordered over two sites, with refined occupancies of 0.829 (4) and 0.171 (4) (Fig. 1). Two intramolecular C–H···N hydrogen-bonding interactions are present which stabilize the conformation of the molecule (Table 2). There are no hydrogen-bonding or π - π interactions (Fig. 2).

Experimental

To a solution of *N*-(1-ethoxycarbonyl-2-phenylethen-1-yl)iminotriphenylphosphorane, (II) (3 mmol), in dry dichloromethane (15 ml) was added phenyl isocyanate (3 mmol) under nitrogen at room temperature. After being left to stand for 8 h, the solvent was removed under reduced pressure, and diethyl ether/petroleum ether (1:2, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration, the solvent was removed to give the carbodiimide (III), which was used directly without further purification. Diethylamine (3 mmol) was added to a solution of the carbodiimide in acetonitrile (15 ml). The mixture was stirred for 6 h, concentrated under reduced pressure and the residue recrystallized from dichloromethane/ petroleum ether (1:4) to give the title compound, (I) (yield 92%; m.p.

© 2006 International Union of Crystallography All rights reserved

organic papers

397 K). Suitable crystals were obtained by vapour diffusion of ethanol into dichloromethane at room temperature.

Z = 8

 $D_r = 1.196 \text{ Mg m}^{-3}$

 $0.30 \times 0.30 \times 0.20$ mm

28769 measured reflections

4072 independent reflections

2667 reflections with $I > 2\sigma(I)$

Mo $K\alpha$ radiation

 $\mu = 0.08 \text{ mm}^{-1}$

T = 292 (2) K

Block, yellow

 $R_{\rm int} = 0.032$

 $\theta_{\rm max} = 27.5^\circ$

+ 0.4215P] where $P = (F_0^2 + 2F_c^2)/3$

Crystal data

C20H21N3O $M_r = 319.40$ Orthorhombic, Pbca a = 18.8275 (10) Åb = 8.9784 (5) Å c = 20.9951 (11) Å V = 3549.0 (3) Å³

Data collection

Bruker SMART 4K CCD areadetector diffractometer φ and φ scans Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\min} = 0.978, T_{\max} = 0.985$

Refinement

Refinement on F^2 $w = 1/[\sigma^2(F_0^2) + (0.0794P)^2]$ $R[F^2 > 2\sigma(F^2)] = 0.056$ wR(F²) = 0.169 S = 1.08 $(\Delta/\sigma)_{\rm max} < 0.001$ $\Delta \rho_{\rm max} = 0.28 \text{ e } \text{\AA}^{-3}$ 4072 reflections 243 parameters $\Delta \rho_{\rm min} = -0.21 \text{ e} \text{ Å}^{-3}$ H-atom parameters constrained

Table 1

Selected geometric parameters (Å, °).

C7-O1	1.209 (2)	C16-N3'	1.456 (7)
C7-N1	1.388 (2)	N3-C19	1.474 (3)
C8-N2	1.385 (2)	N3'-C19'	1.521 (8)
C16-N3	1.346 (3)	N3′-C17′	1.525 (9)
C5-C6-N1	119.61 (17)	N1-C16-N3'	114.5 (5)
O1-C7-N1	125.29 (16)	C16-N3-C17	116.59 (17)
N1-C7-C8	104.07 (14)	C16-N3-C19	123.36 (18)
N2-C8-C7	109.03 (14)	C16-N3'-C19'	123.5 (8)
N2-C16-N3	123.82 (16)	C20'-C19'-N3'	119.1 (17)
N3-C16-N1	121.76 (16)	C7-N1-C6	121.44 (14)
N3-C16-N3'	35.2 (5)	C16-N2-C8	106.04 (14)
C4-C5-C6-N1	-179.7 (2)	N2-C16-N3'-C19'	163.9 (9)
C2-C1-C6-N1	179.28 (19)	N1-C16-N3'-C19'	-54.2 (13)
O1-C7-C8-C9	3.0 (3)	N3-C16-N3'-C17'	-93.7 (16)
N1-C7-C8-C9	-178.30(17)	C16-N3'-C19'-C20'	-41(2)
N1-C7-C8-N2	1.30 (19)	C17'-N3'-C19'-C20'	114.5 (19)
N3'-C16-N3-C17	84.7 (7)	O1-C7-N1-C6	19.0 (3)
N1-C16-N3-C19	-31.7 (3)	N3'-C16-N1-C7	-145.4(6)
N3'-C16-N3-C19	-119.8 (7)	C9-C8-N2-C16	177.51 (19)
C16-N3-C19-C20	127.5 (3)		

Table 2

Hydrogen-bond geometry (Å, °).

	•	• • • •				
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$		
$C15-H15\cdots N2$ $C19-H19A\cdots N1$	0.93 0.97	2.44 2.56	3.078 (2) 2.968 (3)	126 105		

Positional disorder was found in atoms C17-C20/N3 of the diethylamino substituent and atoms of the minor disorder component were refined isotropically. The final site-occupancy factors for the two components were 0.829 (4) and 0.171 (4). All H atoms were positioned geometrically $[C-H = 0.93 (CH), 0.97 (CH_2)$ and 0.96 Å

Figure 1

View of the molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. Both disorder components are shown.

Figure 2

The crystal structure of (I), viewed along the b axis. H atoms bonded to C atoms have been omitted for clarity. Only one disorder component is shown.

 (CH_3)] and constrained to ride on their parent atoms, with $U_{iso}(H)$ values of 1.2 (1.5 for methyl) times $U_{eq}(C)$.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Sheldrick, 2001).

We gratefully acknowledge financial support of this work by the Key Science Research Project of Hubei Provincial Department of Education (No. D200524005).

References

- Bruker (2001). SMART (Version 5.628) and SAINT (Version 6.45) and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hu, Y. G., Yang, S. J. & Ding, M. W. (2004). Phosphorus, Sulfur Silicon Relat. Elem. 179, 1933-1939.
- Lacroix, G., Peignier, R., Pepin, R., Bascou, J. P., Perez, J. & Schmitz, C. (2000). US Patent No. 6002016; Chem. Abstr. (2000), 132, 35698e.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.

- Sheldrick, G. M. (2001). SHELXTL. Version 5.0. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.

- Spek, A. L. (2003). J. Appl. Cryst. **36**, 7–13. Trivedi, S. D., Kubawat, H. T. & Parekh, H. H. (2002). J. Indian Chem. Soc. **79**, 282-283.
- Xin, M. & Hu, Y.-G. (2006). Acta Cryst. E62, o123-124.